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Abstract. Random numbers are used extensively in both cryptography and simulation, but
are difficult to generate reliably using classical methods. We investigate random number
generation on the ibmq 16 melbourne quantum processor, a 15-qubit superconducting quantum
computer. By applying simple post-processing techniques to the random bits generated, we
were able to extract a sample of random bits which passed the NIST Statistical Test Suite. This
shows that, with some post-processing, solid-state quantum computers such as IBM quantum
processors can be used to generate random numbers of sufficient quality for cryptographic
applications.

1. Introduction
Random numbers are used extensively in cryptography, the simulation of economic, traffic and
agricultural models, as well as coordination in computer networks [1]. True random numbers
are hard to generate using classical methods, as the unpredictability relies on an incomplete
knowledge of a system, which can introduce ordered features. On the other hand, the inherent
randomness central to quantum mechanics makes quantum systems ideal for generating true
random numbers. A number of quantum random number generation schemes have been realised
experimentally over the past two decades, many of which rely heavily on photonics [2, 3, 4, 5, 6].
Several photonic integrated circuits [7, 8, 9], as well as implementations on superconducting
systems [10], have also recently been demonstrated.

In this paper, we further investigate random number generation on superconducting quantum
computers. To this end, we generated a sample of random bits using the ibmq 16 melbourne
quantum processor. Just as previous samples generated using IBM quantum processors [10], our
sample showed a small bias towards zero. However, once we removed the bias by employing the
von Neumann scheme [11, 12], the processed bits passed all 15 NIST tests [13], allowing us to
show the successful generation of high quality randomness. The bits of Ref. [10] did not pass any
NIST tests due to a lack of post-processing. After completion of the study, we were made aware
that IBM recently released their own quantum random number generator with post-processing
available via the University of Cambridge, which has also passed the NIST Statistical Test Suite.

2. Implementation
Bits of a classical computer can take only two values, namely 0 or 1. In contrast, qubits of
a quantum computer can be prepared in either of two computational basis states, namely |0〉
or |1〉, or in any linear combination or superposition of these states. A random bit can be
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generated using a qubit, by first applying a Hadamard to the qubit and then measuring it in the
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and in |1〉 with probability 2 . Thus, in the absence of noise, computational basis measurements
generate uniformly distributed random bits.

The ibmq 16 melbourne quantum processor is a 15-qubit superconducting quantum computer
and used to be accessible via the IBM cloud service [14], but has recently been decommissioned.
By executing a circuit with Hadamards applied to all 15 qubits and computational basis
measurements on all 15 qubits 200 times on the ibmq 16 melbourne quantum processor, with
8000 shots each, we were able to generate a sample of 24 million random bits. In what follows,
we will refer to this sample of 24 million bits as the raw sample.

3. Results
3.1. Quality analysis
To determine if the raw sample has the expected properties of a true random bit sequence, we
applied a number of standard tests [2, 3]. What follows is a brief description of each test as well
as the results obtained for the raw sample.

In a true random bit sequence, the bits should be uncorrelated. To detect short-ranged
correlations and periodicity in the raw sample, we calculate the Pearson correlation coefficient
[15] of the full bit sequence with 1-bit to 40-bit delays of the sequence. The results are shown
in figure 1.
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Figure 1. Pearson correla-
tion coefficient of the full bit
sequence of the raw sample
(blue dots) and a true ran-
dom sample (red line) with
1-bit to 40-bit delays of the
sequence.

The Pearson correlation coefficient ranges from -1 to 1, where -1 implies perfect anti-
correlation, 0 implies no correlation and 1 implies perfect correlation. Thus the results indicate
that the bits in the raw sample are mostly uncorrelated, with small correlations present between
bits at 15-bit intervals. This is likely because these bits were generated by the same qubit in the
ibmq 16 melbourne quantum processor. Since each qubit has a unique error rate, bits generated
by the same qubit show larger correlations than bits generated by different qubits.

All possible n-bit combinations should occur with equal probability in a true random bit
sequence. We first consider single bits, for which we expect to find an approximately equal
proportion of zeros and ones in a large enough sample. In the raw sample, the relative frequency
of zeros and ones is 0.5262 and 0.4738 respectively. Hence the data shows a bias towards zero.
As a result of decoherence of the qubits and errors that occur when gates are applied and
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measurements are made, the two different computational basis measurement outcomes do not
occur with a probability of exactly 1 each. To investigate 8-bit blocks, we convert each 8-bit
block in the bit sequence to an unsigned integer in the range [0, 255]. For a true random bit
sequence, these integers should be uniformly distributed over the interval [0, 255] and they should
have an average of 127.5. Figure 2 shows the distribution of integers for the raw sample and
their average is 120.87. The small average can be attributed to the bias towards zero.
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Figure 2. Distribution of integers for the raw sample
(blue dots) and a true random sample (red line).
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Figure 3. Run length distributions
for zeros (blue dots) and ones (blue
crosses) for the raw sample.

A run in a sequence of bits is a block of consecutive zeros or ones. In a true random bit
sequence, a n-bit run of zeros or ones should occur with probability 2−n, since zeros and ones
each occur with probability 1

2 . The run length distributions for zeros and ones for the raw sample
are shown in figure 3. The gradient of the best fit line is (−0.925±0.002) and (−1.076±0.005) for
runs of zeros and ones respectively. For a true random bit sequence, we should have a gradient
of − log2 (2) = −1 for both zeros and ones. The deviations in the data can be explained as
follows — since the zeros occur with a higher frequency than ones, runs of zero occur with a
higher frequency than runs of one of the same length.

Entropy quantifies irregularity or randomness. The Shannon entropy is defined as

H = −
∑
i

pi log2 pi (1)

4

where i ∈ {0, 1}n is an n-bit string and pi is the probability of obtaining i. The Shannon entropy
should be n bits for a true random source of n-bit strings. The Shannon entropy for 8-bit strings
in the raw sample is 7.98403 bits. This was calculated using relative frequencies obtained from
the distribution in figure 2. The entropy is slightly smaller than for a perfectly random source
as a result of order introduced by the bias towards zero and the 15-bit interval correlations.

Finally, we test the raw sample on a practical problem in simulation — estimating the value
of π using a Monte Carlo method. Since the area of a circle of radius r divided by the area of a
square of side length 2r is π , the value of π can be estimated by randomly placing points in a
square of side length r which contains a quarter-circle of radius r. An estimate for π is calculated
by dividing the number of points inside the quarter-circle by the total number of points used
and multiplying by 4. Considering r = 255, and obtaining random positions for points using
the unsigned integers extracted from the raw sample when investigating the distribution of 8-bit
blocks, we obtain an estimate of 3.282 for π. This is larger than the true value of π, because the
bias towards zero results in a larger proportion of points being placed inside the quarter-circle
than for randomly placed points.
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3.2. Post-processing
The quality analysis of the raw sample shows that the bias towards zero greatly reduces its
quality. We therefore employ the von Neumann scheme [11, 12] to remove the bias and improve
the quality. Given a biased sample of independent bits (say, in which 0 occurs with probability
p and 1 occurs with probability q, where p 6= q), the von Neumann algorithm yields an unbiased
sample of random bits. Provided that the bits are independent, the pairs 01 and 10 both occur
with a probability pq in the biased sample and can thus be used as an unbiased source of random
bits. Hence an unbiased sample is obtained from the biased sample by replacing occurrences of 01
by 0, occurrences of 10 by 1 and removing occurrences of 00 and 11. Applying the von Neumann
algorithm reduces the size of the sample by a fraction pq of its original length. However, this
large reduction can be avoided by applying the recursive von Neumann algorithm [12]. Instead
of simply removing occurrences of 00 and 11, they are used to generate additional biased bit
sequences, to which the von Neumann algorithm is then applied. This is repeated recursively,
each time appending the output to the previous. The number of unbiased bits produced by
the recursive von Neumann algorithm is arbitrarily close to the entropy bound [12], and so the
algorithm is optimal in terms of output size.

Although some non-negligible correlations are present between bits in the raw sample, it
is clear from figure 1 that these are generally small enough so that the bits can be considered
independent and the von Neumann scheme can be applied. Applying the recursive von Neumann
algorithm to the raw sample, we obtain a debiased sample of 23,795,395 bits. We applied
the same five standard tests to this debiased sample. The Pearson correlation coefficients are
much smaller for the debiased sample, as shown in figure 4, indicating that the 15-bit interval
correlations have been removed by the rearrangement of bits which occurred when applying the
recursive von Neumann algorithm.
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Figure 4. Pearson corre-
lation coefficient of the full
bit sequence of the debi-
ased sample (blue dots) and
a true random sample (red
line) with 1-bit to 40-bit de-
lays of the sequence.

The relative frequency of zeros and ones in the debiased sample is 0.5001 and 0.4999
respectively, which shows that the bias towards zero has indeed been removed. The distribution
of integers is much closer to a uniform distribution, as can be seen in figure 5, and their average
is 127.46 reflecting the removal of bias. The run length distributions for zeros and ones for the
debiased sample are shown in figure 6 and also reflect the removal of bias. The gradient of the
best fit line is (−1.004 ± 0.008) and (−1.007 ± 0.005) for runs of zeros and ones respectively,
both of which are closer to the expected result for a true random bit sequence. Furthermore, we
find that the Shannon entropy for 8-bit strings is 7.99994 bits and obtain 3.134 for an estimate
of π, both of which show improvement in the quality of the random bits.
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Figure 5. Distribution of integers for the debiased
sample (blue dots) and a true random sample (red
line).
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Figure 6. Run length distributions
for zeros (blue dots) and ones (blue
crosses) for the debiased sample.

Table 1. Summary of NIST test results for the debiased sample. A sequence passes a test if
the p-value (the probability that a true random number generator would generate the given bit
sequence or a less random bit sequence) is greater than 0.01. ‘Required’ is the required number
of sequences which must pass a test for the sample to pass and ‘Proportion’ is the number of
sequences which passed. The p-values quoted in the final column arise via applying a χ2 test to
the p-values obtained for the individual sequences and can be used to assess their uniformity.
When a test consists of more than 5 separate tests (indicated with *) averages were taken.

Statistical Test Required Proportion p-value

230 234 0.231016
230 234 0.735559
230 233 0.236279
230 232 0.043540
230 236 0.158711
230 235 0.247079
230 234 0.547343
230 233 0.609979
230 234.36 0.420221
21 22 0.392456
21 23 0.788728

230 236 0.565084
10 12 0.358879
10 11.89 0.344683
21 23 0.105618
21 23 0.484646

Frequency
Block Frequency
Cumulative Sums 1
Cumulative Sums 2
Runs
Longest Run of Ones
Binary Matrix Rank
Discrete Fourier Transform
Non-overlapping Template*
Overlapping Template
Universal Statistical
Approximate Entropy
Random Excursions*
Random Excursions Variant*
Serial 1
Serial 2
Linear Complexity 21 23 0.105618

3.3. NIST Statistical Test Suite
For a more stringent test of the quality, we applied the NIST Statistical Test Suite [13] to the
debiased sample. This is an industry standard test suite for random number generators, aimed
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at assessing their suitability for use in cryptographic applications. The debiased sample passed
all 15 NIST tests at the required 1% significance level. The results are presented in table 1. The
Overlapping Template, Universal Statistical, Random Excursions, Random Excursions Variant,
Serial and Linear Complexity tests were run with 23 sequences, each consisting of one million
bits. The other tests were run with 237 sequences, each consisting of one hundred thousand bits.
The block length was adjusted to 1128 and 1000 in the Block Frequency and Linear Complexity
tests respectively. Default values were used for the block length in the other tests.

The NIST test results for the debiased sample clearly demonstrate the importance of post-
processing, since previous implementations on superconducting systems, in which no post-
processing was done, did not pass any NIST tests [10]. Photonic quantum random number
generators also generally require post-processing to pass the NIST Statistical Test Suite [1, 2, 9].

4. Conclusion
We generated a sample of 24 million bits using the ibmq 16 melbourne quantum processor. This
raw sample showed a small bias towards zero, which was removed by applying the recursive
van Neumann algorithm [12]. The resulting debiased sample passed the NIST Statistical Test
Suite [13]. We therefore conclude that, with post-processing, solid-state quantum computers
such as IBM quantum processors can be used to generate random numbers of sufficient quality
for cryptographic applications.
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